
How To Work with the ZeroMQ Messaging Library

Authored by: ASPHostServer Administrator [asphostserver@gmail.com]
Saved From: http://faq.asphosthelpdesk.com/article.php?id=270

ZeroMQ

ZeroMQ is a library used to implement messaging and communication systems between applications and
processes - fast and asynchronously.

If you have past experience with other application messaging solutions such as RabbitMQ, it might come a
little bit challenging to understand the exact position of ZeroMQ.

When compared to some much larger projects, which offer all necessary parts of enterprise messaging,
ZeroMQ remains as just a lightweight and fast tool to craft your own.

This Article

Although technically not a framework, given its functionality and the key position it has for the tasks it solves,
you can consider ZeroMQ to be the backbone for implementing the actual communication layer of your
application.

In this article, we aim to offer you some examples to inspire you with all the things you can do.

Note:We will be working with the Python language and its classic interpreter (Python C interpreter) in our
examples. After installing the necessary language bindings, you should be able to simply translate the code
and use your favorite instead without any issues.

Programming with ZeroMQ

ZeroMQ as a library works through sockets by following certain network communication patterns. It is
designed to work asynchronously, and that's where the MQ suffix to its name comes - from thread queuing
messages before sending them.

ZeroMQ Socket Types

ZeroMQ differs in the way its sockets work. Unlike the synchronous way the regular sockets work, ZeroMQ's
socket implementation "present an abstraction of an asynchronous message queue".

The way these sockets work depend on the type of socket chosen. And flow of messages being sent depend
on the chosen patterns, of which there are four:

Page 1/9

PDF Generated by PHPKB Knowledge Base Script

http://faq.asphosthelpdesk.com/article.php?id=270
http://www.knowledgebase-script.com

 •
Request/Reply Pattern:Used for sending a request and receiving subsequent replies for each one sent.

•
Publish/Subscribe Pattern:Used for distributing data from a single process (e.g. publisher) to multiple
recipients (e.g. subscribers).

•
Pipeline Pattern:Used for distributing data to connected nodes.

•
Exclusive Pair Pattern:Used for connecting two peers together, forming a pair.

ZeroMQ Transport Types

ZeroMQ offers four different types of transport for communication. These are:

•
In-Process (INPROC): Local (in-process) communication transport.

•
Inter-Process (IPC): Local (inter-process) communication transport.

•
TCP: Unicast communication transport using TCP.

•
PGM: Multicast communication transport using PGM.

Structuring ZeroMQ Applications

ZeroMQ works differently than typical and traditional communication set ups. It can have either side of the
link (i.e. either the server or the client) bind and wait for connections. Unlike standard sockets, ZeroMQ works
by the notion of knowing that a connection might occur and hence, can wait for it perfectly well.

Client - Server Structure

For structuring your client and server code, it would be for the best to decide and elect one that is more stable
as the binding side and the other(s) as the connecting.

Example:

Server Application Client Application
---------------------[< .. < .. < .. <
Bound -> Port:8080 Connects <- Port:8080

Page 2/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

Client - Proxy - Server Structure

To solve the problems caused by both ends of the communication being in a dynamic (hence unstable) state,
ZeroMQ provides networking devices (i.e. utensils out of the box). These devices connect to two different
ports and route the connections across.

• Streamer: A streamer device for pipelined parallel communications.
• Forwarder: A forwarding device for pub/sub communications.
• Queue: A forwarding device for request/reply communications.

Example:

Server App. Device | Forward Client App.
 > .. > .]------------------[< .. <
 Connects 2 Port Binding Connects

Programming Examples

Using our knowledge from the past section, we will now begin utilizing them to create simple applications.

Note:Below examples usually consist of applications running simultaneously. For example, for a client/server
setup to work, you will need to have both the client and the server application running together. One of the
ways to do this is by using the tool Linux Screen. To install screen on a CentOS system, remember that you
can simply run:yum install -y screen.

Simple Messaging Using Request/Reply Pattern

In terms of communicating between applications, the request/reply pattern probably forms the absolute
classic and gives us a good chance to start with the fundamental basics of ZeroMQ.

Use-cases:

 •
For simple communications between a server and client(s).

•
Checking information and requesting updates.

•
Sendingchecksand updates to the server.

•
Echo or ping/pong implementations.

Page 3/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

Socket type(s) used:

• zmq.REP
• zmq.REQ

Server Example: server.py

Create a "server.py" using nano (nano server.py) and paste the below self-explanatory contents.

import zmq
ZeroMQ Context
context = zmq.Context()
Define the socket using the "Context"
sock = context.socket(zmq.REP)
sock.bind("tcp://127.0.0.1:5678")
Run a simple "Echo" server
while True:
 message = sock.recv()
 sock.send("Echo: " + message)
 print "Echo: " + message

When you are done editing, save and e xit by pressing CTRL+X followed with Y.

Client Example: client.py

Create a "client.py" using nano (nano client.py) and paste the below contents.

import zmq
import sys
ZeroMQ Context
context = zmq.Context()
Define the socket using the "Context"
sock = context.socket(zmq.REQ)
sock.connect("tcp://127.0.0.1:5678")
Send a "message" using the socket
sock.send(" ".join(sys.argv[1:]))
print sock.recv()

When you are done editing, save and exit by pressing CTRL+X followed with Y.

Note: When working with ZeroMQ library, remember that each thread used to send a message (i.e.
.send(..)) expects a .recv(..)to follow. Failing to implement the pair will cause exceptions.

Usage

Page 4/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

Ourserver.pyis set to work as an "echoing" application. Whatever we choose to send to it, it will send it
back (e.g. "Echo:message").

Run the server using your Python interpreter:

python server.py

On another window, send messages using the client application:

python client.py hello world!
Echo: hello world!

Note: To shut down the server, you can use the key combination: Ctrl+C

Working with Publish/Subscribe Pattern

In the case of publish/subscribe pattern, ZeroMQ is used to establish one or more subscribers, connecting to
one or more publishers and receiving continuously what publisher sends (or seeds).

A choice to specify a prefix to accept only such messages beginning with it is available with this pattern.

Use-cases:

Publish/subscribe pattern is used for evenly distributing messages across various consumers. Automatic
updates for scoreboards and news can be considered as possible areas to use this solution.

Socket type(s) used:

 • zmq.PUB
• zmq.SUB

Publisher Example: pub.py

Create a "pub.py" using nano (nano pub.py) and paste the below contents.

import zmq
import time
ZeroMQ Context
context = zmq.Context()
Define the socket using the "Context"
sock = context.socket(zmq.PUB)
sock.bind("tcp://127.0.0.1:5680")
id = 0
while True:
 time.sleep(1)
 id, now = id+1, time.ctime()
 # Message [prefix][message]
 message = "1-Update! >> #{id} >> {time}".format(id=id, time=now)

Page 5/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

 sock.send(message)
 # Message [prefix][message]
 message = "2-Update! >> #{id} >> {time}".format(id=id, time=now)
 sock.send(message)
 id += 1

When you are done editing, save and exit by pressing CTRL+X followed with Y.

Subscriber Example: sub.py

Create a "sub.py" using nano (nano sub.py) and paste the below contents.

import zmq
ZeroMQ Context
context = zmq.Context()
Define the socket using the "Context"
sock = context.socket(zmq.SUB)
Define subscription and messages with prefix to accept.
sock.setsockopt(zmq.SUBSCRIBE, "1")
sock.connect("tcp://127.0.0.1:5680")
while True:
 message= sock.recv()
 print message

When you are done editing, save and exit by pressing CTRL+X followed with Y.

Note: Using the .setsockopt(..)procedure, we are subscribing to receive messages starting with string 1
. To receive all, leave it not set (i.e."").

Usage

Ourpub.pyis set to work as a publisher, sending two different messages - simultaneously - intended for
different subscribers.

Run the publisher to send messages:

python pub.py

On another window, see the print outs of subscribed content (i.e.1):

python sub.py!
1-Update! >> 1 >> Wed Dec 25 17:23:56 2013

Note: To shut down the subscriber and the publisher applications, you can use the key combination: Ctrl+C

Pipelining the Pub./Sub. with Pipeline Patter (Push/Pull)

Very similar in the way it looks to the Publish/Subscribe pattern, the third in line Pipeline pattern comes as a

Page 6/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

solution to a different kind of problem: distributing messages upon demand.

Use-cases:

Pipelining pattern can be used in cases where are list of queued items need to be routed (i.e. pushed in line)
for the one asking for it (i.e. those who pull).

Socket type(s) used:

 • zmq.PUSH
• zmq.PULL

PUSH Example: manager.py

Create a "manager.py" using nano (nano manager.py) and paste the below contents.

import zmq
import time
ZeroMQ Context
context = zmq.Context()
Define the socket using the "Context"
sock = context.socket(zmq.PUSH)
sock.bind("tcp://127.0.0.1:5690")
id = 0
while True:
 time.sleep(1)
 id, now = id+1, time.ctime()
 # Message [id] - [message]
 message = "{id} - {time}".format(id=id, time=now)
 sock.send(message)
 print "Sent: {msg}".format(msg=message)

The file manager.py will act as a task allocator.

PULL Example: worker_1.py

Create a "worker_1.py" using nano (nano worker_1.py) and paste the below contents.

import zmq

ZeroMQ Context
context = zmq.Context()
Define the socket using the "Context"
sock = context.socket(zmq.PULL)
sock.connect("tcp://127.0.0.1:5690")
while True:
 message = sock.recv()
 print "Received: {msg}".format(msg=message)

Page 7/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

The file worker_1.py will act as a task processes (consumer/worker).

Usage

Our manager.py is set to have a role of an allocator of tasks (i.e. a manager), PUSH ing the items.
Likewise, worker_1.py set to work as a worker instance receives these items, when it's done processing
by PULL ing down the list.

Run the publisher to send messages:

python manager.py

On another window, see the print outs of subscribed content (i.e.1):

python worker_1.py!
1-Update! >> 1 >> Wed Dec 25 17:23:56 2013

Note: To shut down the subscriber and the publisher applications, you can use the key combination: Ctrl+C

Exclusive Pair Pattern

Exclusive pair pattern implies and allows establishing one-tone sort of communication channels using the
zmq/PAIR socket type.

Bind Example: bind.py

Create a "bind.py" using nano (nano bind.py) and paste the below contents.

import zmq
ZeroMQ Context
context = zmq.Context()
Define the socket using the "Context"
socket = context.socket(zmq.PAIR)
socket.bind("tcp://127.0.0.1:5696")

When you are done editing, save and exit by pressing CTRL+X followed with Y.

Connect Example: connect.py

Create a "connect.py" using nano (nano connect.py) and paste the below contents.

import zmq
ZeroMQ Context
context = zmq.Context()
Define the socket using the "Context"
socket = context.socket(zmq.PAIR)

Page 8/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

socket.connect("tcp://127.0.0.1:5696")

When you are done editing, save and exit by pressing CTRL+X followed with Y.

Usage

You can use the above example to create any bidirectional uni-connection communication applications.

Note: To shut down either, you can use the key combination: Ctrl+C

Page 9/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

