
How To Create Data Queries in PostgreSQL By Using the Select
Command

Authored by: ASPHostServer Administrator [asphostserver@gmail.com]
Saved From: http://faq.asphosthelpdesk.com/article.php?id=230

What is PostgreSQL?

PostgreSQL is an open source database management system that utilized the SQL querying language.
PostgreSQL, or simply "Postgres", is a very useful tool on a server because it can handle the data storage
needs of websites and other applications.

In this guide, we will examine how to query a PostgreSQL database. This will allow us to instruct Postgres to
return all of the data it manages that matches the criteria we are looking for.

This tutorial assumes that you have installed Postgres on your machine. We will be using Ubuntu 12.04, but
any modern Linux distribution should work.

Log into PostgreSQL

We will be downloading a sample database to work with from the internet.

First, log into the default Postgres user with the following command:

sudo su - postgres

We will acquire the database file by typing:

wget http://pgfoundry.org/frs/download.php/527/world-1.0.tar.gz

Extract the gzipped archive and change to the content directory:

tar xzvf world-1.0.tar.gz
cd dbsamples-0.1/world

Create a database to import the file structure into:

createdb -T template0 worlddb

Finally, we will use the .sql file as input into the newly created database:

psql worlddb < world.sql

We are now ready to log into our newly create environment:

psql worlddb

Page 1/9

PDF Generated by PHPKB Knowledge Base Script

http://faq.asphosthelpdesk.com/article.php?id=230
http://www.knowledgebase-script.com

How to Show Data in PostgreSQL

Before we begin, let's get an idea of what kind of data we just imported. To see the list of tables, we can use
the following command:

\d+

 List of relations
 Schema | Name | Type | Owner | Size | Description
--------+-----------------+-------+----------+--------+-------------
 public | city | table | postgres | 264 kB |
 public | country | table | postgres | 48 kB |
 public | countrylanguage | table | postgres | 56 kB |
(3 rows)

We have three tables here. If we want to see the columns that make up the "city" table, we can issue this
command:

\d city

 Table "public.city"
 Column | Type | Modifiers
-------------+--------------+-----------
 id | integer | not null
 name | text | not null
 countrycode | character(3) | not null
 district | text | not null
 population | integer | not null
Indexes:
 "city_pkey" PRIMARY KEY, btree (id)
Referenced by:
 TABLE "country" CONSTRAINT "country_capital_fkey" FOREIGN KEY (capital)
REFERENCES city(id)

We can see information about each of the columns, as well as this table's relationship with other sets of data.

How to Query Data with Select in PostgreSQL

We query (ask for) information from Postgres by using "select" statements. These statements use this
general syntax:

SELECT columns_to_return FROM table_name;

For example, if we issue "\d country", we can see that the "country" table has many columns. We can create
a query that lists the name of the country and the continent it is on with the following:

SELECT name,continent FROM country;

 name | continent
--+---------------

Page 2/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

 Afghanistan | Asia
 Netherlands | Europe
 Netherlands Antilles | North America
 Albania | Europe
 Algeria | Africa
 American Samoa | Oceania
 Andorra | Europe
 . . .

To view all of the columns in a particular table, we can use the asterisk (*) wildcard character. This means
"match every possibility" and, as a result, will return every column.

SELECT * FROM city;

 id | name | countrycode | district
| population

------+-----------------------------------+-------------+-------------------------------+------------
 1 | Kabul | AFG | Kabol
| 1780000
 2 | Qandahar | AFG | Qandahar
| 237500
 3 | Herat | AFG | Herat
| 186800
 4 | Mazar-e-Sharif | AFG | Balkh
| 127800
 5 | Amsterdam | NLD | Noord-Holland
| 731200
 6 | Rotterdam | NLD | Zuid-Holland
| 593321
 7 | Haag | NLD | Zuid-Holland
| 440900
. . .

Page 3/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

Here, we see the "city" table in its entirety.

Ordering Query Results in PostgreSQL

You can organize the results of your query by using the "order by" clause. This allows you to specify a sort
order to the returned data.

The "order by" clause comes after the normal select statement. This is the general syntax:

SELECT columns FROM table ORDER BY column_names [ASC | DESC];

If we wanted to select the country and continent from the country table, and then order by continent, we can
give the following:

SELECT name,continent FROM country ORDER BY continent;

 name | continent
--+---------------
 Algeria | Africa
 Western Sahara | Africa
 Madagascar | Africa
 Uganda | Africa
 Malawi | Africa
 Mali | Africa
 Morocco | Africa
 CÃ´te d\u0092Ivoire | Africa
 . . .

As you can see, by default the order statement organizes data in ascending order. This means that it starts at
the beginning of lettered organizations and the lowest number for numerical searches.

If we want to reverse the sort order, we can type "desc" after the "order by" column declaration:

SELECT name,continent FROM country ORDER BY continent DESC;

 name | continent
--+---------------
 Paraguay | South America
 Bolivia | South America
 Brazil | South America
 Falkland Islands | South America
 Argentina | South America
 Venezuela | South America
 Guyana | South America
 Chile | South America
. . .

We can also choose to sort by more than one column. We can have a primary sort field, and then additional
sort fields that are used if multiple records have the same value in the primary sort field.

Page 4/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

For instance, we can sort by continent, and then by country to get an alphabetical list of country records in
each continent:

SELECT name,continent FROM country ORDER BY continent,name;

 name | continent
--+---------------
 Angola | Africa
 Burundi | Africa
 Benin | Africa
 Burkina Faso | Africa
 Botswana | Africa
 Central African Republic | Africa
 CÃ´te d\u0092Ivoire | Africa
 Cameroon | Africa
 Congo, The Democratic Republic of the | Africa
. . .

We now have alphabetical sorting in two columns.

Filtering Query Results in PostgreSQL

We have learned how to select only certain information from a table by specifying the columns we want, but
Postgres provides more fine-grained filtering mechanisms.

We can filter results by including a "where" clause. A where clause is followed by a description of the results
we would like to receive.

For example, if we wanted to select all of the cities in the United States, we could tell Postgres to return the
name of cities where the three digit country code is "USA":

SELECT name FROM city WHERE countrycode = 'USA';

 name

 New York
 Los Angeles
 Chicago
 Houston
 Philadelphia
 Phoenix
 San Diego
 Dallas
 San Antonio
. . .

String values, like USA above, must be placed in single-quotations to be interpreted correctly by Postgres.

The previous query used "=" to compare whether the column value is an exact match for the value given on
the right of the expression. We can search more flexibly though with the "like" comparison operator.

Page 5/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

The like operator can use "_" as a wildcard to match a single character and "%" as a wildcard that matches
zero or more characters.

We can also combine filtering terms with either "and" or "or". Let's combine some filtering to find cities in the
US that have names starting with "N":

SELECT name FROM city WHERE countrycode = 'USA' AND name LIKE 'N%';

 name

 New York
 Nashville-Davidson
 New Orleans
 Newark
 Norfolk
 Newport News
 Naperville
 New Haven
 North Las Vegas
 Norwalk
 New Bedford
 Norman
(12 rows)

We can, of course, sort these results just like with regular, unfiltered select data.

SELECT name FROM city WHERE countrycode = 'USA' AND name LIKE 'N%' ORDER BY
name;

 name

 Naperville
 Nashville-Davidson
 Newark
 New Bedford
 New Haven
 New Orleans
 Newport News
 New York
 Norfolk
 Norman
 North Las Vegas
 Norwalk
(12 rows)

Advanced Select Operations in PostgreSQL

We are going to examine some more complex queries. Consider the following:

SELECT country.name AS country,city.name AS capital,continent FROM country JOIN

Page 6/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

city ON country.capital = city.id ORDER BY continent,country;

 country | capital |
continent

---------------------------------------+-----------------------------------+---------------
 Algeria | Alger |
Africa
 Angola | Luanda |
Africa
 Benin | Porto-Novo |
Africa
 Botswana | Gaborone |
Africa
 Burkina Faso | Ouagadougou |
Africa
 Burundi | Bujumbura |
Africa
 Cameroon | Yaoundé |
Africa
 Cape Verde | Praia |
Africa
 Central African Republic | Bangui |
Africa
 Chad | N´Djaména |
Africa
. . .

This query has a few different parts. Let's start at the end and work backwards.

The "order by" section of the statement (ORDER BY continent,country) should be familiar.

This section of the statement tells Postgres to sort based on continent first, and then sort the entries with
matching continent values by the country column.

To explain the next portion, the table specification, we will learn about table joins.

Selecting Data From Multiple Tables in PostgreSQL with Join

Postgres allows you to select data from different, related tables using the "join" clause. Tables are related if
they each have a column that can that refers to the same data.

In our example database, our "country" and "city" table share some data. We can see that the "country" table

Page 7/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

references the "city" table by typing:

\d country

. . .

. . .
Foreign-key constraints:
 "country_capital_fkey" FOREIGN KEY (capital) REFERENCES city(id)
. . .
. . .

This statement tells us that the "capital" column within the "country" table is a reference to the "id" column
within the "city" table. This means that we can almost treat these two tables as one giant table by matching
up the values in those columns.

In our query, the table selection reads "FROM country JOIN city ON country.capital = city.id".

In this statement, we are telling Postgres to return information from both tables. The "join" statement specifies
the default join, which is also called an "inner join".

An inner join will return the information that is present in both tables. For example, if we were matching
columns that were not explicitly related as foreign-keys, we could run into a situation where one table had
values that weren't matched in the other table. These would not be returned using a regular join.

The section after the "on" keyword specifies the columns that the tables share so that Postgres knows how
the data is related. This information is given by specifying:

table_name.column_name

In our case, we are selecting records that have matching values in both tables, where the capital column of
the country table should be compared to the id column of the city table.

Naming Selection Criteria For Table Joins in PostgreSQL

We are now to the beginning of our query statement. The part the selects the columns. This part should be
fairly simple to decipher based on the last section.

We now have to name the table that the columns are in if we are trying to select a column name that is
present in both tables.

For instance, we've selected the "name" column from both the country table and the city table. If we were to
leave off the "table_name." portion of the selection, the match would be ambiguous and Postgres would not
know which data to return.

We get around this problem by being explicit about which table to select from when there are naming
collisions. It is sometimes helpful to name the tables regardless of whether the names are unique in order to
maintain readability.

Conclusion

You should now have a basic idea of how to formulate queries. This gives you the ability to return specific

Page 8/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

data from various sources. This is helpful for building or using applications and interactive webpages around
this technology.

Page 9/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

