
How To Use ps, kill, and nice to Manage Processes in Linux

Authored by: ASPHostServer Administrator [asphostserver@gmail.com]
Saved From: http://faq.asphosthelpdesk.com/article.php?id=177

A Linux server, like any other computer you may be familiar with, runs applications. To the computer, these
are considered "processes".

While Linux will handle the low-level, behind-the-scenes management in a process's life-cycle, you will need
a way of interacting with the operating system to manage it from a higher-level.

In this guide, we will discuss some simple aspects of process management. Linux provides an abundant
collection of tools for this purpose.

We will explore these ideas on an Ubuntu 12.04, but any modern Linux distribution will operate in a similar
way.

How To View Running Processes in Linux

top

The easiest way to find out what processes are running on your server is to run the top command:

top

top - 15:14:40 up 46 min, 1 user, load average: 0.00, 0.01, 0.05
Tasks: 56 total, 1 running, 55 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 1019600k total, 316576k used, 703024k free, 7652k buffers
Swap: 0k total, 0k used, 0k free, 258976k cached
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 20 0 24188 2120 1300 S 0.0 0.2 0:00.56 init
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
 3 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/0
 6 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
 7 root RT 0 0 0 0 S 0.0 0.0 0:00.03 watchdog/0
 8 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 cpuset
 9 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 khelper
 10 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs

The top chunk of information give system statistics, such as system load and the total number of tasks.

You can easily see that there is 1 running process, and 55 processes are sleeping (aka idle/not using CPU
resources).

The bottom portion has the running processes and their usage statistics.

Page 1/6

PDF Generated by PHPKB Knowledge Base Script

http://faq.asphosthelpdesk.com/article.php?id=177
http://www.knowledgebase-script.com

htop

An improved version of top, called htop, is available in the repositories. Install it with this command:

sudo apt-get install htop

If we run the htop command, we will see that there is a more user-friendly display:

htop

 Mem[||||||||||| 49/995MB] Load average: 0.00 0.03 0.05
 CPU[0.0%] Tasks: 21, 3 thr; 1 running
 Swp[0/0MB] Uptime: 00:58:11
 PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command
 1259 root 20 0 25660 1880 1368 R 0.0 0.2 0:00.06 htop
 1 root 20 0 24188 2120 1300 S 0.0 0.2 0:00.56 /sbin/init
 311 root 20 0 17224 636 440 S 0.0 0.1 0:00.07 upstart-udev-brid
 314 root 20 0 21592 1280 760 S 0.0 0.1 0:00.06 /sbin/udevd --dae
 389 messagebu 20 0 23808 688 444 S 0.0 0.1 0:00.01 dbus-daemon --sys
 407 syslog 20 0 243M 1404 1080 S 0.0 0.1 0:00.02 rsyslogd -c5
 408 syslog 20 0 243M 1404 1080 S 0.0 0.1 0:00.00 rsyslogd -c5
 409 syslog 20 0 243M 1404 1080 S 0.0 0.1 0:00.00 rsyslogd -c5
 406 syslog 20 0 243M 1404 1080 S 0.0 0.1 0:00.04 rsyslogd -c5
 553 root 20 0 15180 400 204 S 0.0 0.0 0:00.01 upstart-socket-br

How To Use ps to List Processes

Both top and htop provide a nice interface to view running processes similar to a graphical task manager.

However, these tools are not always flexible enough to adequately cover all scenarios. A powerful command
called ps is often the answer to these problems.

When called without arguments, the output can be a bit lack-luster:

ps

 PID TTY TIME CMD
 1017 pts/0 00:00:00 bash
 1262 pts/0 00:00:00 ps

This output shows all of the processes associated with the current user and terminal session. This makes
sense because we are only running bash and ps with this terminal currently.

To get a more complete picture of the processes on this system, we can run the following:

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.2 24188 2120 ? Ss 14:28 0:00 /sbin/init

Page 2/6

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

root 2 0.0 0.0 0 0 ? S 14:28 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 14:28 0:00 [ksoftirqd/0]
root 6 0.0 0.0 0 0 ? S 14:28 0:00 [migration/0]
root 7 0.0 0.0 0 0 ? S 14:28 0:00 [watchdog/0]
root 8 0.0 0.0 0 0 ? S< 14:28 0:00 [cpuset]
root 9 0.0 0.0 0 0 ? S< 14:28 0:00 [khelper]
. . .

These options tellpsto show processes owned by all users (regardless of their terminal association) in a
user-friendly format.

To see a tree view, where hierarchal relationships are illustrated, we can run the command with these
options:

ps axjf

 PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
 0 2 0 0 ? -1 S 0 0:00 [kthreadd]
 2 3 0 0 ? -1 S 0 0:00 _ [ksoftirqd/0]
 2 6 0 0 ? -1 S 0 0:00 _ [migration/0]
 2 7 0 0 ? -1 S 0 0:00 _ [watchdog/0]
 2 8 0 0 ? -1 S< 0 0:00 _ [cpuset]
 2 9 0 0 ? -1 S< 0 0:00 _ [khelper]
 2 10 0 0 ? -1 S 0 0:00 _ [kdevtmpfs]
 2 11 0 0 ? -1 S< 0 0:00 _ [netns]
. . .

As you can see, the process kthreadd is shown to be a parent of the ksoftirqd/0 process and the
others.

A Note About Process IDs

In Linux and Unix-like systems, each process is assigned a process ID, or PID. This is how the operating
system identifies and keeps track of processes.

A quick way of getting the PID of a process is with the pgrep command:

pgrep bash

1017

This will simply query the process ID and return it.

The first process spawned at boot, called init, is given the PID of "1".

pgrep init

1

This process is then responsible for spawning every other process on the system. The later processes are
given larger PID numbers.

Page 3/6

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

A process's parent is the process that was responsible for spawning it. If a process's parent is killed, then the
child processes also die. The parent process's PID is referred to as the PPID.

You can see PID and PPID in the column headers in many process management applications, including top,
htop and ps.

Any communication between the user and the operating system about processes involves translating
between process names and PIDs at some point during the operation. This is why utilities tell you the PID.

How To Send Processes Signals in Linux

All processes in Linux respond to signals. Signals are an os-level way of telling programs to terminate or
modify their behavior.

How To Send Processes Signals by PID

The most common way of passing signals to a program is with the kill command.

As you might expect, the default functionality of this utility is to attempt to kill a process:

kill PID_of_target_process

This sends the TERM signal to the process. The TERM signal tells the process to please terminate. This
allows the program to perform clean-up operations and exit smoothly.

If the program is misbehaving and does not exit when given the TERM signal, we can escalate the signal by
passing the KILL signal:

kill -KILL PID_of_target_process

This is a special signal that is not sent to the program.

Instead, it is given to the operating system kernel, which shuts down the process. This is used to bypass
programs that ignore the signals sent to them.

Each signal has an associated number that can be passed instead of the name. For instance, You can pass
"-15" instead of "-TERM", and "-9" instead of "-KILL".

How To Use Signals For Other Purposes

Signals are not only used to shut down programs. They can also be used to perform other actions.

For instance, many daemons will restart when they are given the HUP, or hang-up signal. Apache is one
program that operates like this.

sudo kill -HUP pid_of_apache

The above command will cause Apache to reload its configuration file and resume serving content.

Page 4/6

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

You can list all of the signals that are possible to send with kill by typing:

kill -l

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
. . .

How To Send Processes Signals by Name

Although the conventional way of sending signals is through the use of PIDs, there are also methods of doing
this with regular process names.

The pkill command works in almost exactly the same way as kill, but it operates on a process name
instead:

pkill -9 ping

The above command is the equivalent of:

kill -9 `pgrep ping`

If you would like to send a signal to every instance of a certain process, you can use the killall
command:

killall firefox

The above command will send the TERM signal to every instance of firefox running on the computer.

How To Adjust Process Priorities

Often, you will want to adjust which processes are given priority in a server environment.

Some processes might be considered mission critical for your situation, while others may be executed
whenever there might be leftover resources.

Linux controls priority through a value called niceness.

High priority tasks are considered less nice, because they don't share resources as well. Low priority
processes, on the other hand, are nice because they insist on only taking minimal resources.

When we ran top at the beginning of the article, there was a column marked "NI". This is the nice value of
the process:

top

 Tasks: 56 total, 1 running, 55 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.3%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Page 5/6

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

Mem: 1019600k total, 324496k used, 695104k free, 8512k buffers
Swap: 0k total, 0k used, 0k free, 264812k cached
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1635 root 20 0 17300 1200 920 R 0.3 0.1 0:00.01 top
 1 root 20 0 24188 2120 1300 S 0.0 0.2 0:00.56 init
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
 3 root 20 0 0 0 0 S 0.0 0.0 0:00.11 ksoftirqd/0

Nice values can range between "-19/-20" (highest priority) and "19/20" (lowest priority) depending on the
system.

To run a program with a certain nice value, we can use the nice command:

nice -n 15 command_to_execute

This only works when beginning a new program.

To alter the nice value of a program that is already executing, we use a tool called renice:

renice 0 PID_to_prioritize

Note: While nice operates with a command name by necessity, renice operates by calling the process
PID

Conclusion

Process management is a topic that is sometimes difficult for new users to grasp because the tools used are
different from their graphical counterparts.

However, the ideas are familiar and intuitive, and with a little practice, will become natural. Because
processes are involved in everything you do with a computer system, learning how to effectively control them
is an essential skill.

Page 6/6

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

