How To Create Data Queries in PostgreSQL By Using the Select
Command

Authored by: ASPHostServer Administrator [asphostserver@gmail.com]
Saved From: http://fag.asphosthelpdesk.com/article.php?id=230

What is PostgreSQL?
PostgreSQL is an open source database management system that utilized the SQL querying language.
PostgreSQL, or simply "Postgres", is a very useful tool on a server because it can handle the data storage

needs of websites and other applications.

In this guide, we will examine how to query a PostgreSQL database. This will allow us to instruct Postgres to
return all of the data it manages that matches the criteria we are looking for.

This tutorial assumes that you have installed Postgres on your machine. We will be using Ubuntu 12.04, but
any modern Linux distribution should work.

Log into PostgreSQL

We will be downloading a sample database to work with from the internet.

First, log into the default Postgres user with the following command:

sudo su - postgres

We will acquire the database file by typing:

wget http://pgfoundry. org/frs/downl oad. php/ 527/ worl d-1.0.tar. gz
Extract the gzipped archive and change to the content directory:

tar xzvf world-1.0.tar.gz
cd dbsanpl es-0. 1/worl d

Create a database to import the file structure into:

createdb -T tenpl ateO worl ddb

Finally, we will use the .sql file as input into the newly created database:
psql worl ddb < world. sql

We are now ready to log into our newly create environment:

psql worl ddb

Page 1/9
PDF Generated by PHPKB Knowledge Base Script

http://faq.asphosthelpdesk.com/article.php?id=230
http://www.knowledgebase-script.com

How to Show Data in PostgreSQL

Before we begin, let's get an idea of what kind of data we just imported. To see the list of tables, we can use
the following command:

\d+
Li st of relations
Schenma | Nane | Type | Owner | Size | Description
-------- e Sy
public | city | table | postgres | 264 kB |
public | country | table | postgres | 48 kB |
public | countrylanguage | table | postgres | 56 kB |
(3 rows)

We have three tables here. If we want to see the columns that make up the "city" table, we can issue this
command:

\d city
Table "public.city"
Col umm | Type | Modifiers
_____________ e
id | integer | not nul
nanme | text | not null
countrycode | character(3) | not nul
district | text | not nul
popul ation | integer | not nul
| ndexes:

"city_pkey" PRI MARY KEY, btree (id)
Ref er enced by:

TABLE "country" CONSTRAINT "country_ capital fkey" FOREIGN KEY (capital)
REFERENCES ci ty(i d)

We can see information about each of the columns, as well as this table's relationship with other sets of data.

How to Query Data with Select in PostgreSQL

We query (ask for) information from Postgres by using "select" statements. These statements use this
general syntax:

SELECT columms_to _return FROM t abl e_nane;

For example, if we issue "\d country"”, we can see that the "country” table has many columns. We can create
a query that lists the name of the country and the continent it is on with the following:

SELECT nane, conti nent FROM country;

nane | conti nent

Page 2/9
PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

Af ghani st an

Net her | ands

Net herl ands Antilles
Al bani a

Al geri a

Ameri can Sanpa
Andorr a

Asi a

Eur ope

North America
Eur ope

Africa

Cceani a

Eur ope

To view all of the columns in a particular table, we can use the asterisk (*) wildcard character. This means
"match every possibility" and, as a result, will return every column.

SELECT * FROM city;

id |
popul ati on

1 | Kabul
1780000

2 | Qandahar
237500

3 | Herat
186800

4 | Mazar-e-Sharif
127800

5 | Ansterdam
731200

6 | Rotterdam

593321

| Haag

440900

\‘

nane | countrycode | district
____________________ o e e e e e e e eeeeeiaooo

| AFG | Kabol

| AFG | Qandahar

| AFG | Herat

| AFG | Bal kh

| NLD | Noord-Hol I and

| NLD | Zui d-Hol | and

| NLD | Zui d-Hol | and

Page 3/9

PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

Here, we see the "city" table in its entirety.

Ordering Query Results in PostgreSQL

You can organize the results of your query by using the "order by" clause. This allows you to specify a sort
order to the returned data.

The "order by" clause comes after the normal select statement. This is the general syntax:

SELECT col ums FROM t abl e ORDER BY col unmm_nanmes [ASC | DESC];

If we wanted to select the country and continent from the country table, and then order by continent, we can
give the following:

SELECT nane, conti nent FROM country ORDER BY conti nent;

nane | conti nent
__ .
Al geri a | Africa
West ern Sahara | Africa
Madagascar | Africa
Uganda | Africa
Mal awi | Africa
Mal i | Africa
Mor occo | Africa
CA te d\u0092lvoire | Africa

As you can see, by default the order statement organizes data in ascending order. This means that it starts at
the beginning of lettered organizations and the lowest number for numerical searches.

If we want to reverse the sort order, we can type "desc" after the "order by" column declaration:

SELECT nane, conti nent FROM country ORDER BY conti nent DESC,

name | conti nent
__ P,
Par aguay | South Anerica
Bolivia | South America
Br azi | | South America
Fal kl and 1 sl ands | South America
Argentina | South Anerica
Venezuel a | South America
Guyana | South America
Chile | South America

We can also choose to sort by more than one column. We can have a primary sort field, and then additional
sort fields that are used if multiple records have the same value in the primary sort field.

Page 4/9
PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

For instance, we can sort by continent, and then by country to get an alphabetical list of country records in
each continent:

SELECT nane, conti nent FROM country ORDER BY conti nent, nane;

nanme | conti nent
__ A,
Angol a | Africa
Bur undi | Africa
Beni n | Africa
Bur ki na Faso | Africa
Bot swana | Africa
Central African Republic | Africa
CA te d\u0092lvoire | Africa
Caner oon | Africa
Congo, The Denocratic Republic of the | Africa

We now have alphabetical sorting in two columns.

Filtering Query Results in PostgreSQL

We have learned how to select only certain information from a table by specifying the columns we want, but
Postgres provides more fine-grained filtering mechanisms.

We can filter results by including a "where" clause. A where clause is followed by a description of the results
we would like to receive.

For example, if we wanted to select all of the cities in the United States, we could tell Postgres to return the
name of cities where the three digit country code is "USA":

SELECT nanme FROM city WHERE countrycode = ' USA';

New Yor k

Los Angel es
Chi cago
Houst on

Phi | adel phi a
Phoeni x

San Di ego
Dal | as

San Antonio

String values, like USA above, must be placed in single-quotations to be interpreted correctly by Postgres.

The previous gquery used "="to compare whether the column value is an exact match for the value given on
the right of the expression. We can search more flexibly though with the "like" comparison operator.

Page 5/9
PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

The like operator can use
zero or more characters.

as a wildcard to match a single character and "%" as a wildcard that matches

We can also combine filtering terms with either "and" or "or". Let's combine some filtering to find cities in the
US that have names starting with "N":

SELECT nanme FROM city WHERE countrycode = 'USA" AND nane LIKE ' N% ;

New Yor k
Nashvi | | e- Davi dson
New O | eans
Newar k
Nor f ol k
Newport News
Napervill e
New Haven
North Las Vegas
Nor wal k
New Bedf ord
Nor man

(12 rows)

We can, of course, sort these results just like with regular, unfiltered select data.

SELECT nanme FROM city WHERE countrycode = 'USA" AND nane LIKE ' N% ORDER BY
name;

Naperville
Nashvi | | e- Davi dson
Newar k
New Bedf ord
New Haven
New Or | eans
Newport News
New Yor k
Nor f ol k
Nor man
North Las Vegas
Nor wal k

(12 rows)

Advanced Select Operations in PostgreSQL

We are going to examine some more complex queries. Consider the following:

SELECT country. name AS country,city.name AS capital,continent FROM country JO N

Page 6/9
PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

city ON country.capital =

country
conti nent

Al geri a
Africa

Angol a
Africa

Beni n
Africa

Bot swana
Africa

Bur ki na Faso
Africa

Bur undi
Africa

Caner oon
Africa

Cape Verde
Africa

Central African Republic
Africa

Chad
Africa

city.id ORDER BY continent, country;

capi tal

Luanda

Por t o- Novo
Gabor one
Quagadougou
Buj unbur a
Yaoundé
Prai a
Bangui

N D anéna

This query has a few different parts. Let's start at the end and work backwards.

The "order by" section of the statement (ORDER BY continent,country) should be familiar.

This section of the statement tells Postgres to sort based on continent first, and then sort the entries with

matching continent values by the country column.

To explain the next portion, the table specification, we will learn about table joins.

Selecting Data From Multiple Tables in PostgreSQL with Join

Postgres allows you to select data from different, related tables using the "join" clause. Tables are related if
they each have a column that can that refers to the same data.

In our example database, our "country” and "city" table share some data. We can see that the "country" table

Page 7/9
PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

references the "city" table by typing:

\d country

For ei gn-key constraints:
"country capital fkey" FOREIGN KEY (capital) REFERENCES city(id)

This statement tells us that the "capital" column within the "country"” table is a reference to the "id" column
within the "city” table. This means that we can almost treat these two tables as one giant table by matching
up the values in those columns.

In our query, the table selection reads "FROM country JOIN city ON country.capital = city.id".

In this statement, we are telling Postgres to return information from both tables. The "join" statement specifies
the default join, which is also called an "inner join".

An inner join will return the information that is present in both tables. For example, if we were matching
columns that were not explicitly related as foreign-keys, we could run into a situation where one table had

values that weren't matched in the other table. These would not be returned using a regular join.

The section after the "on" keyword specifies the columns that the tables share so that Postgres knows how
the data is related. This information is given by specifying:

t abl e_nane. col utm_nane

In our case, we are selecting records that have matching values in both tables, where the capital column of
the country table should be compared to the id column of the city table.

Naming Selection Criteria For Table Joins in PostgreSQL

We are now to the beginning of our query statement. The part the selects the columns. This part should be
fairly simple to decipher based on the last section.

We now have to name the table that the columns are in if we are trying to select a column name that is
present in both tables.

For instance, we've selected the "name" column from both the country table and the city table. If we were to
leave off the "table_name." portion of the selection, the match would be ambiguous and Postgres would not
know which data to return.

We get around this problem by being explicit about which table to select from when there are naming

collisions. It is sometimes helpful to name the tables regardless of whether the names are unique in order to
maintain readability.

Conclusion

You should now have a basic idea of how to formulate queries. This gives you the ability to return specific

Page 8/9
PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

data from various sources. This is helpful for building or using applications and interactive webpages around
this technology.

Page 9/9
PDF Generated by PHPKB Knowledge Base Script

http://www.knowledgebase-script.com

